 # Three factors which determine the horizontal distance traveled Assignment | College Homework Help

 Week 3 Overview Last week, we covered multiple forces acting on an object. This week we will cover motion in two dimensions, inclined planes, circular motion, and rotation. Forces in Two Dimensions (1 of 2) So far you have dealt with single forces acting on a body or more than two forces that act parallel to each other. But in real-life situations, more than one force may act on a body. How are Newton’s laws applied to such cases? We will restrict the forces into two dimensions. Don't use plagiarized sources. Get Your Assignment on Three factors which determine the horizontal distance traveled Assignment | College Homework Help Just from \$13/Page Since force and acceleration are vectors, Newton’s law can be applied independently to the X and Y-axes of a coordinate system. For a given problem you can choose a suitable coordinate system. But once a coordinate system is chosen, we have to stick with it for that problem. The example that follows shows how to find the acceleration of a body when two forces act on it at right angles to each other. Forces in Two Dimensions (2 of 2) To find the resultant acceleration we draw an arrow OA of length 3 units along the X-axis and then an arrow AB of length 4 units along the Y-axis. The resultant acceleration is the arrow OB with a length of 5 units. Therefore, the acceleration is 5 m/s2 in the direction of OB. Also when you measure the angle AOB with a protractor, we find it to be 53°. The acceleration caused by the two forces is 5 m/s2 at an angle of 53°.
 Uniform Circular Motion When an object travels in a circular path at a constant speed, its motion is referred to as uniform circular motion, and the object is accelerated towards the center of the circle. If the radius of the circular path is r, the magnitude of this acceleration is ac = v2 / r, where v is its speed and ac is called the centripetal acceleration. A centripetal force is responsible for the centripetal acceleration, which constantly pulls the object towards the center of the circular path. There cannot be any circular motion without a centripetal force.

Banking

When there is a sharp turn in the road or when a turn has to be taken at a high speed as in a racetrack, the outer part of the road or the track is raised from the inner part of the track. This is called banking. It provides an additional centripetal force to a turning vehicle so that it doesn’t skid.

The angle of banking is kept just right so that it provides all the centripetal force required and a motorist does not have to depend on the friction force at all.

 Inclined Planes Forces on an Inclined Plane The inclined plane is a device that reduces the force needed to lift objects. Consider the forces acting on a block on an inclined surface. The inclined surface exerts a normal force FN on the block that is perpendicular to the incline. The force of gravity, FG, points downward. If there is no friction, the net force, Fnet, acting on the block is the resultant of FN and FG. By Newton’s second law the net force must point down the incline because the block moves only along the incline and not perpendicular to it. The vector triangle shows that the magnitude of the net force is always less than the weight, FG. Example: A 2 kg block is on an incline which is only able to support 16 N of its weight.  Find the acceleration of the block along the incline. Solution: First, from FG = mg, a 2 kg block weighs 20 N. Also, the normal force is given as 16 N.  We now draw a free body diagram showing all the forces acting on the block: We can find the net force on the block using Pythagorean’s Theorem: Now, we can put Fnet into F=ma to find the acceleration of the block: The block will accelerate down the incline at 6 m/s2.  Projectile Motion (1 of 2) When a ball is thrown or a shell is fired from a gun at an angle to the horizontal, the ball or the shell follows a curved path known as a parabola. The motion is in two dimensions and is called projectile motion. The moving object is called a projectile. The vertical motion and horizontal motion can be analyzed separately for a projectile. The horizontal direction can be the x-axis and the vertical direction of the y-axis.
 Vertical Motion In the vertical direction, only the force of gravity acts on the projectile. The vertical motion of the projectile is the same as the motion of an object thrown vertically upward with the same initial vertical velocity. If vy is the initial vertical component of velocity, the projectile will reach a maximum height of h = vy2 / (2 g), which is the maximum height reached by an object thrown vertically upward with velocity vy. The time for which the projectile remains in flight is again determined by the initial vertical component of velocity and is given by t = 2 vy / g, which is also the total time for which an object thrown vertically upward with velocity vy stays in the air. Using the navigation on the left, please proceed to the next page.
 Projectile Motion (2 of 2) Horizontal Motion In the horizontal direction, there is no force acting on the projectile. So by Newton’s law, there is no acceleration in the horizontal direction. If the projectile is given an initial velocity of vx it remains the same throughout the duration of the flight. The horizontal distance, x, that the projectile travels is given by: x =  vxt The total time of flight has already been stated to be 2 vy / g. Therefore, the range is: x = vx (2 vy / g) x = 2 Vx vy / g. The range is determined by both the horizontal and vertical components of velocity.
 Rotational Motion (1 of 2) The CD drive in your computer makes the CD spin at a high rate to either read or write data. This is an example of rotation about a fixed axis. Until now, we have dealt with objects that translate or move along a straight or curved path. Just as the motion along a path is described in terms of distance, speed, and acceleration, rotational motion is measured in terms of the angular position, speed, and acceleration of a body. Angular Displacement, Velocity, and Acceleration Angular displacement is the angle through which a body rotates and is measured in radians. When a body makes one full rotation its angular displacement, θ, is 360° or 2π radians or 6.28 radians. A radian is approximately 57.3°. You should always use radians when working with any circular motion problem. To convert between units, one revolution = 360 degrees = 2π radians. To convert an angular displacement to a distance, multiply by the radius of the circle: A rotating rigid body has an angular speed. For translation, speed is the rate at which distance is covered. Angular velocity, ω, is the rate at which the angular position of the body changes. To convert from an angular velocity to a tangential velocity, multiply by the radius of the circle: If the angular velocity of a body changes, the body has an angular acceleration, α. Angular acceleration is the rate at which angular velocity changes. To convert from an angular acceleration to a tangential acceleration, multiply by the radius of the circle: Rotational Motion (2 of 2) Torque When the doorknob is pushed or pulled, the force rotates the door about its hinge. The turning action depends on the product of the force component perpendicular to the lever arm and the lever arm. This quantity is called torque, τ, and its units are N m. Torque = Force perpendicular to lever arm x length of lever arm τ=Fperpr

Newton’s Law for Rotation

Newton’s second law, F = ma, is for translation. For rotation, Newton’s law is τ= Iα.

In this equation

τ is the torque, I am the rotational inertia of the rigid body, and α its angular acceleration.

A pair of dumbbells that has its two masses farther away from each other, is much more difficult to twist than one in which the masses are close together. Rotational inertia, I, depends not only on the mass of the object but also on how this mass is distributed about the axis of rotation. The farther the mass is from the axis of rotation, the greater the rotational inertia.

 Rotational Equilibrium An object is in rotational equilibrium when the net torque acting on the object is zero. This, in turn, means that the angular acceleration is zero. Rotational equilibrium defines when an object is in balance, and can also be used to define when a lever will be able to raise a mass.
 Week 3 Summary This week covered forces in two dimensions, circular motion, inclined planes, projectiles, and rotation. You learned how to apply Newton’s laws in situations with different types of motion. Relate the concepts covered in this week to more real-life situations. Get Business & Finance homework help today

Calculate the price
Pages (550 words)
\$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with Homework Writing Services
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Technology
Thank you for doing a great job. I really am glad that you did not use someones else work like the first person who did this did. Awesome job. Because of this I will continue to use this site!
Customer 454345, June 2nd, 2020
Good content. Journals do not require citations/references.
Customer 459947, May 29th, 2022
Impeccable!
Customer 452441, April 3rd, 2022
Military
excellent work
Customer 456821, November 1st, 2022
Ecology
Good
Customer 453413, April 19th, 2020
English 101
Looks really good, thanks
Customer 454425, June 16th, 2020
Good job!
Customer 463337, March 16th, 2023
Human Resources Management (HRM)
Customer 462499, May 21st, 2022
Education
Thank you. Well written
Customer 463647, February 3rd, 2023
Nursing
Job well done!!!
Customer 453939, February 24th, 2020
As I expected.
Customer 460551, December 15th, 2021
Military
excellent
Customer 456821, September 8th, 2022
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend 