Pareto Frontier and Design Option Assignment | Homework Help Websites
February 7th, 2019
Consider the sensor system describe. Suppose that the cost of the each of the designs is:
OPTIONS | COST |
Design 1 | $25.16 |
Design 2 | $25.25 |
Design 3 | $37.58 |
Design 4 | $32.96 |
Design 5 | $37.00 |
Design 6 | $43.64 |
Design 7 | $42.98 |
- Develop a Pareto Frontier Diagram that plots the DOs in terms of the net technical performance (found in Lecture 1.9) vs. cost. Be sure to label the axes and data points.
- Identify the Pareto Frontier/Set of DOs.
- Develop a new MAVF for the DOs in which the attributes are net performance and cost.
- Find the weight coefficients for each attribute assuming the customer weighs the technical performance as 100 and cost as 80.
- Write down expressions for the single attribute value functions and the total value function.
- Identify the “Best Design Option” and explain your answer.
- Suppose that the uncertainty in the performance value is +/- 0.05 and the uncertainty in each cost value is +/-20% and the uncertainty in the customer “Ranking” for Cost is +/-20. Perform a sensitivity analysis on the “Best Option” from part d.
- Develop a Tornado Diagram Table and a Tornado Diagram.
- What can you conclude from this?
- What design would you recommend? Why? What caveats should go with this?
Reference Case = DO 4 | |||||||||||||||
Metric: | MAVF | ||||||||||||||
Questions: | |||||||||||||||
What factor uncertainties have biggest impact? | |||||||||||||||
Which factor(s) should one attempt to get a better estimate for? | |||||||||||||||
What is effect on recommendation? | |||||||||||||||
Factor Uncertainties | Swing Weighting | ||||||||||||||
Reference | High | Low | Case | Pfd | Pfn | Ao | Rank | Weight | Wt Value | ||||||
Pfd | 0.0000008 | 0.0000009 | 0.0000007 | Worst | 0.0000024 | 0.020 | 0.993 | 0 | |||||||
Pfn | 0.002 | 0.0022 | 0.0018 | Best, Worst , Worst | 0.0000008 | 0.020 | 0.993 | 100 | wfd = | 0.455 | |||||
Ao | 0.993 | 0.9935 | 0.9925 | Worst, Best, Worst | 0.0000024 | 0.002 | 0.993 | 80 | wfn = | 0.364 | |||||
Rfd | 100 | 100 | 90 | Worst, Worst, Best | 0.0000024 | 0.020 | 0.999 | 40 | wa = | 0.182 | |||||
Rfn | 80 | 100 | 70 | 220 | |||||||||||
Ra | 50 | 60 | 40 | ||||||||||||
MAVF Single Factor Uncert Table (for DO 4) | Analysis Table | Wt1 = wfd | Wt2 = wfn | Wt3 = wa | |||||||||||
Reference | High Fi | Low Fi | 0.455 | 0.364 | 0.182 | ||||||||||
Pfd | 0.734 | 0.71 | 0.758 | Design Option | SVVF1 | SVVF2 | SVVF3 | MAVF | |||||||
Pfn | 0.734 | 0.73 | 0.738 | Pfd | Pfn | Ao | Vfd | Vfn | Va | Vt | |||||
Ao | 0.734 | 0.752 | 0.716 | Design 1 | 0.0000024 | 0.010 | 0.999 | 0.00 | 0.56 | 1.00 | 0.384 | ||||
Rfd | 0.734 | 0.734 | 0.727 | Design 2 | 0.0000024 | 0.002 | 0.997 | 0.00 | 1.00 | 0.67 | 0.485 | ||||
Rfn | 0.734 | 0.756 | 0.722 | Design 3 | 0.0000008 | 0.020 | 0.999 | 0.89 | 0.00 | 1.00 | 0.586 | ||||
Ra | 0.734 | 0.768 | 0.704 | Design 4 | 0.0000008 | 0.010 | 0.997 | 0.89 | 0.56 | 0.67 | 0.727 | ||||
Design 5 | 0.0000008 | 0.002 | 0.993 | 0.89 | 1.00 | 0.00 | 0.768 | ||||||||
Design 6 | 0.0000006 | 0.020 | 0.997 | 1.00 | 0.00 | 0.67 | 0.576 | ||||||||
Design 7 | 0.0000006 | 0.010 | 0.993 | 1.00 | 0.56 | 0.00 | 0.657 | ||||||||
Low Value | 0.0000006 | 0.002 | 0.993 | ||||||||||||
High Value | 0.0000024 | 0.020 | 0.999 | ||||||||||||
Tornado Table (MAVF for DO 4) | |||||||||||||||
Change in MAVF | |||||||||||||||
Low Vt | High Vt | ||||||||||||||
Pfd | -0.024 | 0.024 | |||||||||||||
Pfn | -0.004 | 0.004 | |||||||||||||
Ao | -0.018 | 0.018 | |||||||||||||
Rfd | -0.007 | 0.000 | |||||||||||||
Rfn | -0.012 | 0.022 | |||||||||||||
Ra | -0.030 | 0.034 | |||||||||||||
Total DO4 Uncertainty = | 0.050484 |